
Advanced Computing Systems:
* .. 4 An Advanced Reasoning-Based Development Paradigm for

0 Ada Trusted Systems and Its Application to MACH

QI

< ARPA Order No. 6414
Program Code No. 9T10

Contract No. MDA 972-89-C0029

Quarterly Status Report
Report #1

DTIC 15 March 1989
S'LECTE

8,rx, AR -6 1989]&12

TRW
FEDERAL SYSTEMS GROUP

Systems Division
2750 Prosperity Avenue

P.O. BOX 10400
Fairfax, Virginia 22031

,-74 r

Quarterly Status Report
Report #1

15 March 1989

Reporting Period:
28 November 1988- 28 February 1989

This Quarterly Technical Report provides information on our progress towards accomplishing our
Phase I objectives. The body of this report consists of a set of attachments, primarily working
notes, which provide snapshots of our technical work in progress.

Process Model Development

A major Phase I activity is the development of a process model for high performance trusted
systems in Ada. The TRW/CLI/rlS toam has been operating as a working group to develop the
process model. We have been meeting as a working group every two weeks for 1-2 day
"brainstorming" sessions and preparing material (briefings and/or internal working notes) in
between sessions to further define issues we surface. The list below indicates the areas covered
at the meetings we had during the repor-ing period..

0 19 January 1989 Kickoff Meeting :.

- Detailed schedule for Phase I Activities
- Discussion of related activities

Ava work by CLI
Arcadia work by Arcadia Consortium .. .

Review of documents for basis of process model:

-Spiral Process Model
- Ada Process Model (TRW use only) I

o 6 February 1989 Working Group Meeting A1"

Overview of ASOS (Army Secure Operating System developed by TRW as
Al system in Ada)
Overview of Ava (A Verifiable Ada)

Ava Information
Ava and ASOS Ada (Attachment #3)

Process Model: Goals, Components and Drivers

o 17 February 1989 Working Group Meeting

- ASOS Questions and Answers
- Computer Security Lessons Learned
- Risk Management for a trusted Application

Trust Engineering for Commercial Products (Attachment #4)
Process Model Brainstorming (Attachment #5)
Distinctions between commercial and Mission-critical trusted systems (Attachmen! #6)

Attachment #1 is a draft of the outline for our Process Model Report; Attachment #2 is a draft
of an annotated outine for Volume I of the Report.

MACH Analysis

This initial analysis is described in Attachment #7, Ada/Security Study and MACH Analysis.

NOTE: ALL ATTACHMENTS TO THIS QUARTERLY REPORT ARE INTERNAL WORKING
"VOTES AND DRAFTS. THEY ARE FOR DARPA PROGRAM MANAGER USE ONLY AND

ARE NOT FOR FURTHER DISTRIBUTION OR CITATION.

STaW

PROCESS MODEL FOR HIGH PERFORMANCE TRUSTED SYSTEMS IN ADA

OUTLINE OF REPORT

Volume I

Introduction
1.1 Purpose
12 Scope
1.3 Overview of Document

2 Objectives and Basis of the Process Model
21 Objectives
22 Basis/Foundation: Spiral Process Model

3. Motivations (Drivers) and Constraints of the Process Model
3.1 Motivations (Drivers)

3.1.1 Trust
3.12 Ada
3.1.3 Performance

3.2 Constraints
3.2.1 Political/Sociological Environment
3.22 Cost
3.2.3 Available Technology/Knowledge

4. Overview of Primary Risk Issues
4.1 Trust-Related Risks

4.1.1 Technological Immaturity
4.12 Policy Risks
4.1.3 Assurance Risks
4.1.4 Development Risks
4.1.5 Evaluation/Accreditation Risks

4.2 Ada-Related Risks
4.2.1 Technological Immaturity
4.22 Ada-Inexperienced Staff
4.2.3 Inadequate Resources

4.3 Performance-Related Risks
4.3.1 Mission Inadequacy
4.3.2 Evolvability
4.3.3 Interactions with Trust

5. Elements of the Process Model
5.1 Risk Management

5.1.1 Formal Risk Management Techniques
5.12 Modeling and Specification
5.1.3 Prototyping and Demonstrations
5.1.4 Incremental Development

52 Ada in the Process Model
52.1 Homogeneous Representation
522 Metrics
5.2.3 Reuse

5.3 Engineering for Trust and Performance
5.3.1 Architecture Analysis
5.32 Performance Modeling

5.4 Other Software Engineering Techniques
5.4.1 Analysis/Assurance Techniques
5.42 Configuration Managcment and Control

5.5 Accreditation and Certification

6 Process Model in the Lifecycle
6.1 Concept Definition

6.1.1 Critical Risks
6.12 System Feasibility

62 Trust/Performance Assessment
62.1 Criticality Assessment
622 Architecture Assessment
6.2.3 Documentation

6.3 Control and Management
6.3.1 Configuration Management and Control
6.32 Reviews and Walkthroughs

6.4 Requirements Analysis
6.5 Analysis

6.5.1 Reasoning for Trust
6.52 Reasoning for Performance

6.6 Modeling and Specification
6.6.1 Informal
6.62 Formal

6.7 Prototyping and Demonstration
6.7.1 Architecture Skeleton
6.72 Critical Mechanisms

6.8 Design and Implementation Approach
6.8.1 Incremental Development
6.82 Design Validation

6.9 Accrediation and Certification

Glossary

PROCESS MODEL FOR HIGH PERFORMANCE TRUSTED SYSTEMS IN ADA

OUTLINE OF REPORT

Volume ii

1. Distinctions Between Trusted Commercial Product and Mission-Critical Systems Developmeo,

2 Application of Process Model to Trusted Commercial Product

3. Application of Process Model to Trusted Mission Critical System

4. Application of Process Model to Trusted Mach in Ada

5. Tailoring of Process Model to Dod-STD-2167A

Appendices

A: Trust Requirements for the Software Development Environment

B: Ada'Security Study and Mach Analysis

C: Initial Specification of Trust Analysis Tool (for Arcadia Environment?)

DRAFT
13 March 1989

PROCESS MODEL FOR HIGH PERFORMANCE TRUSTED SYSTEMS IN ADA

ANNOTATED OUTLINE OF REPORT

Volume I

1. Introduction

1.1 Purpose
- Increase productivity and quality of high performance trusted systems
- Reduce risks inherent in trusted system development
- Incorporate lessons learned
- Exploit features of Ada (language and software engineering aspects of it)
- Effectively integrate security, trust and performance engineering with a modem

system development paradigm for Ada

12 Scope
Definition of a process model (including components)
Activities addressed by the process model

- Types of systems to which it is intended to be applied
- Timeframe we're addressing -- long term vision (mid-1 990's and beyond) but

guidance on nearer term application (examples in Volume II)
Guidance based on extensive experience and lessons learned but not a "cookbook"

- Relationship to standards and policies (TCSEC, 2167A, company and government
policies)
Applicability for non-Ada projects

1.3 Overview of Document
- Brief description of what is in each of the rest of the chapters in Volume I
- Brief description of Volume II
- Brief description of the Appendices

2 Objectives and Basis of the Process Model

2.1 Objectives
Expand purpose described very briefly in Section 1.1 and give an overview of
how elements of the process model satisfy its primary goals, e.g.,

- Reduce risks
Increase productivity
Improve quality

- Achieve high performance and trust

22 Basis/Foundation: Spiral Process Model
- Overview of the spiral process model and its key aspects (include diagram)
- Foundation into which we've integrated security, trust and performance

engineering, Ada and formal methods, etc. in the context of sound software
engineering practices and automation and support

- Stress the following aspects:
- Improving process and product
- Risk management throughout
- Iteration at different levels and risk reduction activities can be

carried out in parallel

3. Motivations (Drivers) and Constraints of the Process Model

3.1 Motivations (D i ers)

Primary motivations for developing the process model fall into three categories:
- Trust-based motivations
- Ada-based motivations
- Performance-based motivations

3.1.1 Trust
- Definition and aspects of trust
- Continuum of trust levels

Trust dimensions diagrams and discussions from brainstorming
- Metrics on trust notes of 2.17.89
- Tradeoffs against trust
- Reasoning needed for trust

Configuration management and control for trust

3.12 Ada
Applicability of Ada as a notation for multiple activities of the lifecycle
(uniformity in specification/design and implementation)
Potential for Ada reuse
Software engineering aspects of Ada
Opportunity to use tools, e.g., to support reasoning and configuration
management and control for trust
Ada as a specification language
Verifiability of Ada
Customers' commitment to Ada

3.1.3 Performance
Aspects of performance

Speed
Effectiveness
System performance
Mission-criticality performance
Resource utiiization
Real-time eii(iA,

Reasoning for performance

2

Design tension and interaction with trust

32 Constraints

Primary constraints impacting the process model fall into three categories:
Political/sociological environment (today and of the mid 1990's)
Cost
Available technology/knowledge

3.2.1 Political/Sociological Environment
Overview of distinctions between commercial and mission-critical trusted
systems
Notes from 2/17/89 brainstorming session (collapsed into less categories and
less information)

3.22 Cost
- Cost-effective
- Financial rules
- Different cost distribution
- Appropriate use of assurance technology consistent with cost
- Schedule impacts

3.2.3 Available Technology/Knowledge
- Recognition of where we are and projection of where technology and

knowledge will be in 1990's
- Available products/components
- Support toolI
- Maturity level
- Trustworthiness of the development environment

4. Overview of Primary Risk Issues

Discussion of the key risk aspects of each of the three drivers rnpdLaing tne piucess mode;
and the issues associated with controlling them.

4.1 Trust-Related Risks

4.1.1 Technological Immaturity
Conceptual risks of ill-understood issues and unsolved problems
Development risks: design and implementation techniques, principles.
metrics not well established and few good examples
Lack of leverage to build on top of existing trusted hardware and
software

3

4.12 Policy Risks
Ability to model broader notion of trust than confidentiality
Policy model satisfy policy objectives? and is ;It useful and usable?
Features to implement policy

Adequate to support application developers and system users
Incompatible with existing commercial components or customer
developed software base
Difficulties in demonstrating correspondence between policy and
implementation

4.1.3 Assurance Risks
Size, simplicity and isolation of the trusted computing base
Risks of analyses and verification

- Value of verifying formal model vs. implementation verification
- Level of testing appropriate
- Feasibility and meaningfulness of code correspondence
- Lack of tools to effectively support analyses and verification of Ada

throughout lifecycle
- Completeness and correctness of covert channel analysis and

penetration testing and analysis

4.1.4 Development Risks
Prioritization to be carried out throughout lifecycle of cost, schedule, trust.
performance, mission and functionality, etc. -- needs to be consistent
Skil! specialization between security/trust engineers and system developers
Redundancy and contradictions in both documentation and in system as it
evolves and develops

System requirements vs. trust policy and rationale
Evolving Ada design, specifications and code and how it relates to
formal and descriptive top level specifications

- Testing plans and results vs. security testing
Configuration management to control and manage the system and
the documentation

Confusion over extensions/constraints of methodology and development
standards for trusted computing base

- Design rules, coding standards, naming conventions
- Configuration management and testing requirements

Specialized tools may be needed
Redevelopment (maintenance) activities may invalidate assurances or
trigger recertification or reevaluation

4.1.5 Evaluation/Accreditation Risks
Definition of evaluation and accreditation and who performs each
"Rules of the game" not well-defined or stable
Pushing the state-of-the-art requires new interpretations of TCSEC and
^ther evaluation criteria for broader definitions of trust
Incremental evaluation not done before
Conflicting demands of accreditor/evaluator, customer and end-user

4

4.2 Ada-Related Risks

4.2.1 Technological Immaturity
Immature compilers may result in programs not compiling or incorrect
compilation
Immature support system

- Run-time support may be incompatible with host environment
- Tools may be missing or full of errors
- Tools may be incompatible or inefficient

Inadequate support for use of Ada throughout the lifecycle
Immature or no tools to support Ada as a design language or Ada as
a specification language
Inadequate support for reasoning for trust and performance for Ada
Configuration management and control for entire lifecycle is lacking

4-22 Ada-Inexperienced Staff
Advanced Ada features are seductive and easy to misuse, e.g., tasking,
generics and limited private types
Too easy to overassess Ada advantages, e.g., portability of code, compiler
catching more errors
Inexperienced Ada managers need to focus more on value of front end
investment, different staffing needs, hardware selection/software impact
risks
Little experience in industry in use of Ada for trusted systems

4.2.3 Inadequate Resources
Ada compilers do more and need additional computing power
More mass memory required
Training can be significant resource - consumer
Immaturity of tool suppliers can cause schedule problems
Access to "Ada gurus" is critical scarce resource
Mismatch between pre-Ada budget and schedule and reality of Ada
developerments

4,3 Performance-Related Risks

4.3.1 Mission Inadequacy
Inadequate attention to performance issues throughout development
lifecycles may cause system unable to perform mission and not meet
performance requirements
Inability to identify mission risks where failures would result in serious missior
compromise
Inadequate integration of techniques to address performance/mission risks
result in risks not being mitigated

4.3.2 Evolvability
Inadequate attention to system evolvability may result in system not
achieving desired high performance

5

4.3.3 Interactiors with Trust
Keeping both trust and high performance as priorities is difficult in system
engineering, design engineering and development

Access mediation vs. throughput and responsiveness
- Always trading off one against the other throughout the lifecycle
- Engineering and development techniques to achieve performance

often impact trust and vice versa
Engineering for both is key challenge
Configuration management for performance and trust so we have adequate
visibiiity and metrics is important risk area to be addressed

5. Eiements of the Process Model

Process model is an integration of strategic elements from both research and practice
Process model has long-term vision but also nearer-term applicability

51 Risk Management
Highlight risks throughout lifecycle activities
Software engineering and management techniques for managing and controlling
risks
Develop risk management plan

Do it early
Maintain it throughout lifecycle; it evolves
Address primary risks first
Include decisive risk mitigation actions and link to transition criteria

5.1.1 Formal Risk Management Techniques
Identify (generic) primary risks in building high performance trusted systems
(based on Section 4) early in the process, evaluate the risks, decide on
action to red-jce risk (e.g., modeling, orototyping, analysis, etc.)
Risk identification/evaluation performed at beginning of each major activity
of development
Specific actions mitigate specific risk areas

5.12 Modeling and Specification
Identify key aspects of trust and performance to be modtied, informally and
then formally, to a level that's appropriate for the system development and
the criticality of the risk

- Modeling and specification activities help identify unknown or fuzzy
requirements, flesh out critical performance issues and mitigate policy risks
as well as early development risks
If performed concurrently with prototyping, helps reduce risk of redundancy
and contradictions with the evolving Ada design and development

5.1.3 Prototyping and Demonstrations
Identify and mitigate key risks associated with fuzzy requirements
(especially with respect to performance and trust), system architecture
definitions, critical mechanisms for trust and performance, user interface (as
appropriate for system being built)

6

Prototypes reduce overall project risks while supporting the development
process; reduce risk that a particular technical approach will not satisfy
performance requirements
Use of Ada for prototyping and demonstrations helps validate interfaces
early, a high risk issue
Prototyping helps analyze performance and evaluate evolvability of the
system
Evaluate prototype "product" and incorporate lessons learned into the design
(when Ada used for prototyping, gives traceability and early compilable
results for later development)

5.1.4 Incremental Development
Process model utilizes incremental software design and development
approach which provides early availability of operational software and
better visibility into the software development process
Early incremental builds defined to address areas that are higher risk,
prerequisites to later incremental builds or required for early integration and
test activities
Approach gives increased flexibility and facilitates early risk reduction since
(high risk) less mature system capabilities may be implemented early for
advance warning of potential or real project risks

52 Ada in the Process Model

Process model does not limit Ada's role to the implementation activity; Ada is used
across multiple activities and reuse of Ada components encouraged as well as a
consistent use of metrics across the lifecycle.

52.1 Homogeneous Representation
- Ada used as a design language and potentially as a (formal) specification

language in addition to being used as the implementation language
- Ada's abstraction and language extensibility features enable description of

software design; at each level of design, complete Ada program can be
created using Ada specifications to formally define interfaces among objects
and operations

- Can include some design information as comments in the Ada code
throughout lifecycle since design expressed as compilable Ada design
language and then transformed into code
Advantages

- Compiler can be used early in design process for automated
syntactic and semantic checking of logical inconsistencies

- Consistent set of tools can be used from preliminary design on
Maintaining design and configuration management of design simplified
Validating design supported by compiler which results in lower risk and
earlier resolution of interface problems
Enables better metrics to be used

Ada as specification language (needs further elaboration)

7

522 Metrics
Benefit of using Ada throughout is the consistency of metrics to determine
design progress, product growth and requirements change impacts
Metrics can be compared against planning estimates to evaluate progress
and analyze trends -- get earlier visibility and better insight into potential
later problems
Enable useful metrics to be ge-grated

5.2.3 Reuse
Process model encourages consideration of available components that can be
reused at all levels of design

- Expect that reusable Ada components are more mature, known and
validated quantities and less risky (??) to use

- Impact of reusable software assessed several times during lifecycle starting
with software architecture definition
Taking advantage of reuse (assuming there is lots of good stuff in reuse
libraries to reuse) can increase software quality because software becomes
mature through reuse and further analysis

- Reuse in the face of trust requirements and performance requirements is a
significant challenge

5.3 Engineering for Trust and Performance

Trust and performance must be kept as equal high priority requirements because
they are often in opposition to one another

5.3.1 Architecture Analysis
Throughout lifecycle, assessment of system architecture carried out to
determine support for trust and performance requirements
Initial trust assessment determines or evaluates hardware base as well as
software architecture for its structure and its support of access mediation
Structure and characteristics of potential trusted compuing base determined
or evaluated for adequacy for trust and performance requirements
Critical architecture mechanisms and skeletons are prototyped to enable
analysis for further development and engineering -- validates interfaces,
evaluates growth and flexibility
Modeling and specification of critical mechanisms can also support trust and
performance engineering

5.32 Performance Modeling
- Performance engineering techniques (more details later) applied throughout

the system lifecycle
- Discrete analysis and modeling techniques support achieving high

performance requirements
- Throughout lifecycle, assessment of desired performance characteristics

and allocation of performance budgets to components
- Initial performance assessment emphasis on determining what portion of the

resource use is attributable to trust mechanisms
- Information flow analysis to determine performance bottlenecks

8

Discrete analysis and performance modeling techniques to support bottle-
neck reduction and "what if" alternative architecture analysis
Prototyping of alternatives to high impact bottlenecks or proposed trust
mechanisms

5.4 Other Software Engineering Techniques

- Two categories of software engineering techniques are essential elements of the
process model: various analysis and assurance techniques as well as
configuration management and control techniques

5.4.1 Analysis/Assurance Techniques
Process model effectively integrates spectrum of analysis and assurance
techniques, both informal and formal, to support design, development and
assessment of high performance trusted systems
Techniques include initial criticality assessment, trust and performance
assessment, informal and formal specifications at appropriate levels of
abstraction, various levels of testing, covert channel analyses, security and
penetration testing, informal and formal modeling, performance modeling
[section needs to be expanded and a diagram would be useful here]

5.42 Configuration Management and Control
- Since spiral process model allows so much flexibility and various design and

development activities are proceeding in parallel (e.g., prototyping and
modeling) but to differing levels of detail and completion, it is essential to
have strong configuration management and control from the earliest time
possible, e.g., as soon as there are compilable Ada specifications or earlier

- Effective (automated) configuration management and control throughout
the lifecycle highly advantageous -- early visibility and control, early risk
reduction because of problems identified earlier

55 Accreditation and Certification
- Since the objective of the process model is development of high performance

trusted systems, accreditation and certification (of some sort) performed external
to the system development process yet design, documentation and assurance
components of the process model are needed to support the accreditation and
certification process

- High level description of the accreditation and certification process useful here as
well as the components of the process model needed to support this process

Architectural design
- Documentation
- Assurance

6. Process Model in the Lifecycle [More work to be done in annotating section]

More effort required during analysis and design activity than generally required by
traditional system development
Adjustments in project planning and scheduling necessary

9

Small expert team used effectively during requirements and design activities to work
critical risk issues
Several aspects of process model facilitate small team approach but a great deal of
communication on all fronts necessary
Process model divides lifecycle into nine activities

- Activities, not phases, to emphasize iterative nature of the activities within
process model, rather than sequential approach taken earlier

- Various activities may be done in parallel but some are best done sequentially
(we will describe dependencies and inter-relationships)

Activities addressed:

- Concept Definition
- Trust/Performance Assessment
- Requirements Analysis
- Analysis

Modeiing and Specification
Prototyping and Demonstrations

- Preliminary Design
- Detailed Design
- Implementation and Integration
Risk reduction and configuration management to be done throughout lifecycle
Elements of the process model introduced in Section 5; this section provides a summary
of the key elements of the process model in the context of the activities of the lifecycle
For each of the lifecycle activities, we will define (generic) risks addressed, risk
mitigation strategies, approaches and tasks, typical documents or prototypes produced,
results and criteria to transition to other lifecycle activities

6.1 Concept Definition
- Activities consist of identifying system concept for the project focusing on critical

risk issues and determination of system feasibility

6.1.1 Critical Risks
- Identification of primary trust, performance and other risks in the system

concept definition
- Perform studies and analyses and prepare reports, e.g.

- Threat analysis
- Operational analysis
- Initial trust assessment
. Definition of environmental characteristics
- Performance/trust issues

6.12 System Feasibility
- Perform analysis to determine if early identified system concept

requirements can be met
- Identify and resolve trust, performance, budget and schedule objectives
- Determine analysis/assurance technology needed

Prepare:
- Initial Risk Management Plan

10

- System concept document

- Strawman budget and schedule

62 Trust/Performance Assessment

62.1 Criticality Assessment

Further analyzes critical risk issues and determines trust level for system to
try to achieve
Determines significant performance impacts to address in risk management
plan
Results in initial set of high level critical system requirements

622 Architecture Assessment
Determine whether the architecture proposed (or to be enhanced) can
achieve the desired trust level and achieve the desired performance
requirements
Analyze hardware base and the software architecture for structure
and its support of access mediation
Initial high level prototyping may be performed to determine COTS use;
reuse assessment performed
Hardware performance modeling performed

6.2.3 Documentation
- If a system enhancement, design documentation analyzed to determine

support for the architecture analysis and assurance requirements for the
trust level to be achieved

- Security/trust policy document developed

6.3 Control and Management
These activities are carried out throughout the lifecycle to manage and control
the process model efforts so that there is review and concensus before
transitioning to the next set of activities; also used to configuration manage the
evolving portions of the system in various stages of modeling, prototyping and
analyzing

6.3.1 Configuration Management and Control
System being developed evolving and various activities performed in parallel
but to different degrees of completion
Version history kept, prototypes tracked, compilable Ada "components"
configuration managed so that visibility in progress available and closure on
process and products achieved

6.32 Reviews and Walkthroughs
Reviews and walkthroughs are used throughout lifecycle to achieve
consensus or perform iteration on an activity if concensus not reached
This section will describe the various reviews and walkthroughs to be carried
out, the decisions made and the documents and system components to be
produced which are reviewed [diagrams useful here]

11

6.4 Requirements Analysis
Establishes set of requirements based on the initial concept definition and trust/
performance assessment; governed by risk management plan
Primary activities include: (needs elaboration)
* System analysis

Performance analysis
Software reuse assessment
Security/trust model development
Trade-off analyses
Growth and flexibility scenarios
Prototyping or modeling for early COTS and architecture issue resolution
Formulation of early risk/vulnerability analysis

65 Analysis
Process model integrates spectrum of analysis and assurance techniques aimed
at supporting the reasoning that is needed for trust and performance as well as
supporting the accreditation and certification activities to be performed
Techniques Include: [Needs elaboration]

* Analyses and trade-off studies performed (described in Sections 6.1, 6.2 and
6.4)
Informal and formal trust and performance model

- Informal and formal verification of design and implementation
- Risk/vulnerability assessments
- Covert channel analyses
- Various levels of testing throughout
- Penetration testing
- Performance and security testing

6.5.1 Reasoning for Trust
- This section will describe the various analysis and assurance techniques

that support trust reasoning
For each technique, define what it is, what risk area it addresses, when it
is performed, other analyses it relates to, role it plays, transition criteria
for next activity

6.52 Reasoning for Performance
- This section will describe the same characteristics for the analysis and

assurance techniques that support the performance reasoning (e.g.,
performance modeling and simulation, critical mechanisms prototyping,
algorithm modeling, etc.)

6.6 Modeling and Specification
Process model incorporates both informal and formal modeling and specification
activities carried out during the lifecycle to address specific risk areas and
provide assurances in support of building high performance trusted systems
Techniques indude: [Needs elaboration]

* Security/trust model
Performance model

12

- Descriptive top level specification
- Formal top level specification

Process model encourages use of Ada as a specification language; this section will
discuss how Ada fits into the specification activities

6.6.1 Informal
- This section will describe the informal modeling and specification, what risk

issue it addresses, when it is performed, role it plays, transition criteria tor
next activity

6.62 Formal
- Same description for formal modeling and specification techniques

6.7 Prototyping and Demonstration
Critical risk management strategy is construction of prototypes of both the
system architecture skeleton and the critical mechanisms of the system (early use
of Ada desirable)
Provide initial strawman for evaluating the system solution and tor surfacing the
architecture and critical mechanism limitations early in the lifecycle

6.7.1 Architecture Skeleton
This early prototyping activity helps evaluate critical risk drivers and
assesses whether reuse of existing components possible as well as support
for trust and performance requirements
Prototypes begin from top-level interfaces and components to provide a
platform for incremental integration of the subsystems as they evolve
(user interface prototyped if high risk issue)
Architecture skeleton represents the top-level software design into which
lower level modules can be added incrementally
Provides early evaluation of candidate approaches, demonstrable initial
testbed environment for review and feedback, early tangible evidence of
performance and use of actual interfaces to validate them early

6.72 Critical Mechanisms
- Provides a means for evaluating trust, functionality and performance

characteristics of certain mechanisms determined by earlier analysis to be
critical

- These may be algorithms or security mechanisms that can greatly impact
performance if not designed properly

68 Design and Implementation Approach (Needs elaboration and diagrams]

6.8.1 Incremental Development
Process Model approach to software development emphasizes development
of incremental capabilities with incremental generation and review of the
design and documentation products
Provides early availability of operational software and additional visibility
into development process

13

Early increments address areas that are high risk (examples here?),
precursors to later development, or required for early software development
and integration; later increments provide additional software functionality
until fu!l software structure complete
Description of walkthroughs and review?

6.82 Design Validation [Needs elaboration and diagrams]
- Use of Ada for design permits automated tools (e.g., compiler) to be used

early to validate syntax and some semantics

6.9 Accreditation and Certification
- This section will describe the general accreditation and certification activities of the

process model [TCSEC activities only one aspect of it]

Glossary

This section will define key terminology used in the report.

14

Ava and ASOS Ada

John McHugh

6 February 1989

Corl1fgonaj LOgC Inc

Overview
Ava is a subset of Ada for which a formal definition is

being developed. Several formalisms are being used.

" Denotational Semantics

" Boyer Moore Logic

" Lisp

The ASOS operating system was developed using a
subset of Ada dictated by a variety of security related
factors. A significant factor is the ASOS use of Gypsy
specifications for its FTLS and the need for showing
correspondence between the Gypsy FTILS and the
Ada code.

We hope to compare these subsets and determine
whether Ava is or can be made to be suitable for
trusted operating system development.

w ill /usonwwidxD4avaisub,,fsA9 rrs 2 5 Fary 18

COcVuIgo'na LogC inc

m nu m uumuu n imnnuunaumn mlnlmliN nl mm m MnnuMN

I

Sources

The following documents form the basis for the
comparison:

1. The A va Reference Manual: Derived from
ANSI/MIL-STD- 1815A- 1983 CLI Draft Technical
Report Version A2. Jan 1989

2. The nanoAVA Definition CLI Technical Report 21,
Revised Draft, Oct. 1988

3. Initial Development Specification Rationale for
ASOS TRW ASOS Contract CDRL G014 (Draft) 8
April 1987

4. MLS OS Final Development Specification Rationale
for ASOS TRW ASOS Contract CDRL G01 5 (Draft)
12 May 1988

5. Reference Manual for the Ada Programming
Language - ANSI/MIL-STD- 1815A- 1983 Feb. 1983
U.S. Dept. of Defense

N OR luSrfho"widarm va/sUOSS/Lasm r s 3 ,5 b'ruay '189

Cc-Vjig11oa L09C T'C

Organization

The presentation follows the order of the Ada
Language Reference Manual (for better or for worse).
Each section (or subsection as necessary) will be
summarized with a slide for Ava followed by a slide
for the ASOS subset and a slide for discussion if the
differences seem to warrant.

References to the Ada Language Manual will be of
the form [LRM i.j..-n] where ij, etc. are chapter,
section, etc. and n is a marginally numbered
paragraph.

mi
co'virxgona' -0C

Ava - Chapter 1

The purpose of the Ava manual is to facilitate proofs
of the correctness of programs written in the Ava
subset.

[LRM 1.3] "Design Goals and Sources" has been
removed.

[LRM 1.4-12] "Goto" statements have been removed.

[LRM 1.4-17] Statements applicable to tasking have
been removed.

[LRM 1.4-20 and 25] Access types have been
removed.

[LRM 1.4-22] Numeric types FLOAT and DURATION
have been removed.

[oill w

Ra s

Ava - Chapter 1 cotd.

[LRM 1.4-24 and 26 and 27] Discriminated records
have been removed.

[LRM 1.4-29] Representation clauses and Machine
Code insertions have been removed.

[LRM 1.4-31] Generics have been removed.

[LRM 1.6-6.10] Erroneous execution, Incorrect order
dependencies, and optional PROGRAM-ERROR
compilation have been removed.

v,uto'w ,ir&a y/subsIrasO flUs 6 5 e a ..

C.'v1jfa r&: _0gr 1C

ASOS - Chapter 1

Neither of the ASOS sources explicitly covers this
Chapter.

Discussion - Chapter 1

The removals of section 1.4 will be discussed later.
The removal of erroneous execution and incorrect
order dependencies moves a burden from the
programmer to the programming system.

This removal may affect the compilability of Ava by
Ada compilers due to strengthened requirements on
the order of evaluation of Ava programs.

,js'ho W'I s arWD~zaa u~sasmb6Lw Ts 7 W'

CO'VMao ogr

q

Ava - Chapter 2

[LRM 2-1] References to Pragmas have been
removed.

[LRM 2.4] All references to real literals have been
removed.

[LRM 2.8] Pragmas - removed.

ASOS - Chapter 2

No changes. It is not clear if ASOS actually makes
use of Pragmas or of real types.

/us, ho"*#w oaama avaLsu gtiahs Ts 8989

Discussion - Chapter 2

Note that AVA does not "unreserve" any Ada
reserved words. The formal definition will make
programs containing reserved words whose meaning
has been removed from the Ava definition illegal.

Pragmas could be used to restrict compiler behavior
when compiling Ava programs. In this case, they
would have no meaning in Ava but could be used to
ensure that a compiler having an Ava mode enforced
certain rules that ensured conformance to the Ava
definition.

NM lugrlof aL'W/d pa/WPW /kWSxS 9 "as 199

Cor , oa Lg C Inca

Ava - Chapter 3

[LRM 3.1] References to declarations germane only to
discriminants, tasks, and generics have been
removed.

[LRM 3.2] References to Objects germane to reals,
tasks, discriminants, and generics removed.
References to Objects defined in terms of access
types and slices removed.

[LRM 3.2-9] Objects must be initialized.

[LRM 3.2.1] Object Declarations - Discussions of
implicit initialization removed.

[LRM 3.2.2] Number Declarations - Discussion of
reals removed.

[LRM 3.3] Types and Subtypes - Reals, Tasks,
Discriminant and Derived type references removed.

[LRM 3.4] Derived types - Omitted

I
MU 10 5 re& uary I98q

Co'rpou ona; Logc I s

Ava - Chapter 3 cotd.

[LRM 3.5.4-7] Predefined integer types except
INTEGER removed.

[LRM 3.5.5] Attributes WIDTH, and IMAGE removed.
(-4 and -10,11)

[LRM 3.5.5-14] removed (Object attributes A'SIZE
and A'ADDRESS)

[LRM 3.5.6] Real Types - Removed

[LRM 3.5.7] Floating Point Types - Removed

[LRM 3.5.8] Operations of Floating Point Types -
Removed

[LRM 3.5.9] Fixed Point Types - Removed

[LRM 3.5.10] Operations of Fixed Point Types -
Removed

C1 9/89rthot wJ Lg 1e y

ComonulonaJ Logic Inc

Ava - Chapter 3 cotd.

[LRM 3.6.2] Operations on Arrays - Attributes T'SIZE,
A'SIZE and A'ADDRESS omitted. Relational and
logical operations omitted.

[LRM 3.7] Variants and discriminants omitted

[LRM 3.7.1] Discriminants - Removed

[LRM 3.7.2] Discriminant Constraints - Removed

[LRM 3.7.3] Variant Parts - Removed

[LRM 3.7.4] Operations of Record Types - The
Attributes A'CONSTRAINED, T'SIZE, A'SIZE and
A'ADDRESS are omitted.

[LRM 3.8] Access Types - Removed

[LRM 3.9] Declarative Parts - References to tasks and
generics omitted.

lug~o irwl~ da)/IFvDW t lS@WJM0Sm n 12 5 February I wq

Cot uwonta Logic Inc

ASOS - Chapter 3

ASOS permits access types, but prohibits the NEW
operation which somewhat constrains them. Need to
determine to what extent they are actually used in the
kernel.

ASOS permits Variant records and discriminants.

ASOS permits reals but attempts to minimize their
use. Need to determine actual usage.

1ur r m rDW v&D&u, bSOW@M mu 13 5 FGruy 1989

CO.opulona LOgC Inc

Discussion - Chapter 3

There seems to be no real technical objection to the
inciusion of Variant records in Ava. They are omitted
for now to reduce complexity. They will probably be
required to accurately implement MACH message
structures.

The question of access types is more difficult. The
Ava group at CLI is strongly opposed to admitting
them. At the same time, it seems that they present no
deep technical problems. MACH depends heavily on
address variables for process management and
communications and it is difficult to conceive of an
efficient implementation without them.

Reals are best left alone for now. Fixed point
numbers are worth a second look, but appear to have
no impact on MACH.

,uITII r- a &%1Iz Sdi n' r ?U,5W 14 5 rebua'y 1 9e

CoMDftWonaIJ Logic Inc

Ava - Chapter 4

[LRM 4.1] References to tasks, generics, reals, etc.
omitted.

[LRM 4.1.2] Slices - Removed.

[LRM 4.2] References to real literals omitted.

[LRM 4.3-4] Named and positional associations
cannot be mixed.

[LRM 4.5] Operations on reals are omitted. Logical
(but not comparison) operations on aggregates are
omitted.

[LRM 4.6] Type conversions involving reals,
discriminants, and access types are omitted.

[LRM 4.8] Allocators - Removed

[LRM 4.9] Statics - References to reals and
discriminants removed.

/usrnoE=trw/1d",hwtfD&/N "wf. * M" 15 5 Fatxuary 1989

Corri~tOnalJ LogC Inc

Ava - Chapter 4 cotd.

[LRM 4.10] Universal Expressions - References to
reals removed.

ASOS - Chapter 4

No particular restrictions

Discussion - Chapter 4

None of the Ava restrictions appear to cause any
particular difficulties.

.'0"Vvhosonai !7 Incs t m u 16 5 ebuary 1989

Ava - Chapter 5

References to real, task, and generic related items
are removed throughout the chapter.

[LRM 5-2] References to task related and code
statements removed.

[LRM 5.1] References to LABEL removed. GOTO
statement removed.

[LRM 5.2] Case in which type of RHS used to
determine type of LHS (Al-001 20) does not occur in
Ava.

[LRM 5.3] Array slice assignment omitted.

[LRM 5.9] GOTO statement - Removed.

/u~r/ho rw/dai3av&/sLft9W&&o r 17 5 Pebruary 1989

CorrWA,onaJ Logc 'nc

ASOS - Chapter 5

No specific restrictions. (Are gotos actually used?)

Discussion - Chapter 5

No problems anticipated.

Crshrtmlrwddaron va/&uba@JSSM og 18 5 Febtuary 18c

CorI'nlto LOgIc IC

Ava - Chapter 6

[LRM 6-1] Reference to tasks and generics omitted.

[LRM 6.1] Reference to default expressions for formal
parameters omitted.

[LRM 6.2] Formal parameter mode OUT is omitted.
References to constraints and discriminants are
omitted. Much of the discussion of potentially
erroneous programs is omitted.

[LRM 6.3] Programs written in a different language
are omitted.

[LRM 6.3.1-2,4] Literal substitutions omitted.

[LRM 6.3.2] Inline expansion - Removed.

ius r w "asdat 9/ubsoWn m ru 1g 5 Febrjr 1989

GC"OU191na: LOgC InC

Ava - Chapter 6 cotd.

[LRM 6.4] Named parameter associations removed.
Aliasing explicitly prohibited.

[LRM 6.4.1] Mode OUT, access types, and
discriminants omitted.

[LRM 6.4.2] Default Parameters - Removed.

[LRM 6.6] Overloading of operator symbols by user
subprograms omitted.

[LRM 6.7] Overloading of Operators - Removed.

&o m ui 2C 5 ob,ur W..

S0MtnA'0loa cYX "

ASOS - Chapter 6

ASOS prohibits aliasing and functions that reference
global variables or that have side effects. Procedures
are allowed to reference global state variables.

Discussion - Chapter 6

The prohibition of OUT mode parameters is tied in
with ensuring that all variables always have a well
defined value. The prohibition against aliasing
eliminates a class of erroneous programs.

The omission of named parameter associations and
default parameter values appears inconsequential,
but unnecessary except to simplify the definition.

w.I Mu1 2' 5 8.

Cofrulrona LOgC I'c

Ava - Chapter 7

Changes to this chapter are primarily devoted to
omitting references to Ada features already removed
from Ava such as tasks, generics, discriminants,
reals, operator symbol overloading, programs in other
languages, etc.

[LRM 7.6] Text Handling Example - Removed.

ASOS - Chapter 7

No specific restrictions.

Discussion - Chapter 7

None

H ilr1O u 22 5 F qX wyn

aO-V'r Ona~ LopcIn

Ava - Chapter 8

As seen earlier, it is possible to interpret this chapter
so as to preclude legal Ada programs. The Ava
version is almost identical to the Ada version except
for reference to a number of Als.

On the other hand, formalizing this chapter is a major
headache. One problem that arises is the possibility
that other Ava omissions render unambiguous
overload resolution problems that would be
ambiguous in full Ada.

It is to be expected that this chapter will change as
the formalization progresses.

/u6t/haI dgrP'8'&/Su & @Wa&6 MU 2J3 5 Feuay 1989

ASOS - Chapter 8

ASOS prohibits renaming declarations.

Discussion - Chapter 8

None

lu /h~WrfrW~Rw V4a~ /&uSWastsMo MMA 24 5 FwbUwy 1989

00! Vi~oa:~ Oqgc Inc

Ava - Chapter 9

[LRM 9] Tasks - Removed

ASOS - Chapter 9

ASOS prohibits Ada tasking in the kernel. It permits it
in non-kernel trusted software.

Discussion - Chapter 9

Ada tasking is complex and not well understood.
Most implementations provide their own task monitors
so that OS tasking facilities are not used. It does not
appear to be easy to implement Ada tasking in Ada
thus making it difficult to verify the support even if Ava
verification were available.

Clearly, a better model will be necessary for MACH.

/utrhorr/h VrWdaMpW§Vay'I Wa§Jos rrn. 25 5 February 1989

COrrV-~aa LOgC IC

Ava - Chapter 10

Changes to this chapter are primarily devoted to
omitting references to previously omitted features of
the language such as pragmas and subunits.

Problems concerning the recompilation of Library
units and orders of elaboration interact with visibility
rules and complicate the formalization.

ASOS - Chapter 10

No Impact

Discussion - Chapter 10

Probably cries out for some simplifying assumptions.
Look at GVE incremental development model MK-II.

l1,ustNr vrw/ a v&,ou&@a s mu 26 5 Fbuary '989

ComulgnUfa~ Logic In1c

Ava - Chapter 11

References to tasks, subunits, reals, generics, etc.
have been omitted throughout the chapter.

[LRM 11.1-6] NUMERICERROR is no longer
implicitly raised. CONSTRAINTERROR is raised
instead {AI-00387}

[LRM 11.3-2] A RAISE statement must explicitly name
the exception being raised. Implicit propagation is not
possible.

[LRM 11.5] Exceptions During Tasking - Removed.

[LRM 11.6] Exceptions and Optimization - Removed.

[LRM 11.7] Suppressing Checks - Removed.

/usrfht~'ombwdDW~vWa/t sa/MO1 / .S.ua 27 5 Pebruary 1989

CorTpulinaJ LgcQ Inc

ASOS - Chapter 11

ASOS avoids exceptions at the TCB boundary to
simplify covert channel analysis. It requires handlers
and explicit propagation elsewhere.

Discussion - Chapter 11

The Ava restrictions do not seem to preclude careful
and disciplined use of exceptions. The interaction
with parameter passing mechanisms seem to
preclude meaningful interpretation of the results of
abandoned computations, but the formalization will be
the final arbiter of that.

I
larflornW wda,).&a/tlub:UW nSM fu 28 5 - uary I 9

Cor uallvona LOgC Inc

Ava - Chapter 12

[LRM 12] Generics - Removed.

ASOS - Chapter 12

Generics not permitted.

Discussion - Chapter 12

Dave Musser has been doing a lot of work in this
area. Validated compilers produce wildly differing
results on many examples. Probably best to avoid it
for now, but it looks so nice in many ways.

This is probably the point at which the complexity of
Ada collapses on itself.

/Husrf rwJpm~a, rTJ 29 5 -ebruary 1989

Cr _.In&'LOgC InC

Ava - Chapter 13

[LRM 13.1] Representation Clauses - Removed

[LRM 13.2] Length Clauses - Removed

[LRM 13.3] Enumeration Representation Clauses -

Removed

[LRM 13.4] Record Representation Clauses -

Removed

[LRM 13.5] Address Clauses - Removed

[LRM 13.5.1] Interrupts - Removed

[LRM 13.6] Change of Representation - Removed

stlcffT1trwIdarIaiav&sI .elJmosn u. 30 S FobuJawy 1989

Co"VU1,,Uoa, Ogc inc

Ava - Chapter 13 cotd.

[LRM 13.7] Package SYSTEM is reduced to the
minimum and maximum integers and the system
name.

[LRM 13.7.1] Named Numbers are MININT and

MAX INT

[LRM i 3.7.2] Representation Attributes - Removed

[LRM 13.7.3] Representation Attributes of Real Types
- Removed

[LRM 13.8] Machine Code Insertions - Removed

[LRM 13.9] Interface to Other Languages - Removed

[LRM 13.10] Unchecked Programming - Removed

LeoII
,Je arwsva4r eJww w *inaos !U* 31 5 Feruay I 989

CorAN'M n;Bg " Logc ,c

ASOS - Chapter 13

ASOS allows but restricts system dependent features.
This is necessary in an OS that is to run on bare
hardware.

Discussion - Chapter 13

Some mechanism will have to be developed to either
interface with machine code or to handle interrupts
and representations or both.

Thought should be given to integrating the Ava model
with machine models such as those used for KIT.

I iuirfl'fto'a. wddhmWtva/ABsJ u'u 32 5 Vebruary '98-

COMLO21r* o& LOgK -

Ava - Chapter 14

To be done in the future

ASOS - Chapter 14

ASOS miinimizes use of Ada I/O.

Discussion - Chapter 14

Ava will eventually have a definition for at least some
portion of the Ada I/O package. The same arguments
that apply to ASOS would apply to MACH. We need
to develop the primitive I/O within the system, not
outside it.

Cmipw & 11 ,srrhorT,.,dwD&mva/,UbseWSM MU 33 -rur

Jo~ ~

Conclusion

The Ava definition is supposed to be finished by the
end of the year.

Ava will probably have most of the features needed
for MACH server or kernel implementation. We will
need to push in some areas, notably Variant
structures and access types.

i fr" 34 Ptyuary '989

Covrl- ogic-

TRUST ENGINEERING

o New Operating System

o Modified Operating System

o Application System

Focus on B2 and Beyond

INITIAL TRUST ASSESSMENT

Is The Existing System Supportive

of Trust Requirements?

o Hardware Base

o Software Architecture

Structure

Access Mediation

o Documentation

O How to Mediate Access and Enforce

MAC?

- What Comprises TCB?

- What Are Subjects?

- What Are Objects?

- How Is Labeling Done?

- How Can Data Flow Between

Subjects and Objects?

- How Is Mediation Done?

o Are the TCB Structure and Characteristics

Adequate?

Does the TCB:

- Have Domains for Its Own

Execution?

- Maintain Process Isolation

Through Distinct Address Spaces?

- Exclude Non-protection Critical

Elements?

- Support Least Privilege?

- Have A Layered and Modular

Structure?

- Embody A Conceptually Simple and

Complete Protection Mechanism?

o Are the Remaining Trust Features

Supported?

Does the System Have Adequate Mechanisms

for:

- Identification and

Authentication?

- Trusted Path?

- Audit?

- Security Administration Function?

- Object Reuse?

- Trusted Recovery?

What Axe the Covert Channels?

TRUST ENGINEERING

o Provides Focus on Trust Throughout

Development

o Integrates Trust-Related Activities with

Development

o Manifests Tension Between Trust and

Other Requirements

o Requires Developers' Cooperation and

Endorsement

It.

-D v n s is zi

TMACH

o Trust Assessment

Amenable System Structure

Strong Access Control Mechanism

o Development of System Protection

Strategy

o Policy Representation for Kernel

Modeling

Covert Channel Analysis

o Build for Kernel

o Policies for Servers

Trust Assessment of Design

Modeling

Covert Channel Analysis

o Build for Servers

o System Testing

Security Functional

Covert Channel

Gedanken Penetration

Incorporating Trust into an Existing System

Spiral Process Model Version

1st Loop: Is System Amenable to

Trust?

o At Reasonable Cost

o With Some Compatibility

Risk Resolution: Perform Trust Analysis

to Size Effort

o Locate and Clarify Trust

Issues

o Determine Modification

Costs and Impact

Decision: Target Level

Whether to Proceed

2nd Loop: Develop Protection

Strategy

o Meet Target Level

o Compatibility

o Cost

o Performance

Risk Resolution: Develop Design with

Mandatory Access

Mediation

o Trust Analysis

o Modeling

o Covert Channel Analysis

Decision: Can Design Comply with

Constraints?

o Continue as Planned

o Change Goals

o Kill Project

3rd Loop: Design and Develop Trusted

System

"Traditional" Development

Prototype

Waterfall

VFW
DARPA

Advanced Computing Systems Project
Notes from Process Model Brainstorming Session

17 February 1989
Agenda

ASOS Questions and Answers Lou Nagy
Computer Security Lessons Learned Pat Rougeau
Risk Management for a Trusted Application Dan Sterne
Trust Engineering for Commercial Products Marty Branstad

Lunch

Process Model Brainstorming NAI
* Review notes from 2/6/89 meeting and refine

- Drivers

- Constraints
- Other trade-offs
- Trust dimensions

* Distinctions between commercial and mission-critical trusted systems
(initial analysis only -- more next meeting)

* Define cycles of spiral for trusted systems
- Risks to be identified/managed
- Activities
- Documents
- Criteria for next phase transition

(Deferred to next meeting)

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Participants:
Ann Marmor-Squires, TRW John McHugh, CLI Marty Branstad, TIS
Pat Rougeau, TRW Dan Sterne, TIS
Bonnie Danner, TRW

Lou Nagy, TRW

Activities
* Review and modification of notes from 2/6/89 meeting
* Refinements to process model

- Drivers (Ada, trust, performance)
-Trust dimensions
- Constraints (politica1Isociological, cost, available technology/knowledge)
- Other tradeoffs against trust

General process model definition:
* Conceptual framework for a system lifecycle which structures the activities

associated with the creation and support of the system

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

General Process Model Goals
" Useful for enhancements to existing systems as well as new systems

(i.e., multiple entry points to the process)
" Supports "cradle to grave" development
" Promote product quality

- Reliability - Mission-effectiveness (including performance)
- Trustworthiness - Maintainability

" Be cost-effective

" Be practical
- Easy to use
- Training available
- Comprehensible results
- Tailorable to customer constraints

" Accommodate diverse set of lower level development paradigms
(e.g., prototyping, reusable components, program families, evolutionary
development)

" Provide visibility into the process (managers, customers)
- Progress being made - Likelihood of success
- Measurable

" Aid predictability and control
- Awareness of status -Achieving convergence
- Transitioning to next staoe - Supported by confiouration management

* Ability to respond to changing requirements
- Risk-driven

" Support traceability throughout the process
* Amenable to automation as appropriate

• Scales up to complex systems

[Underlined are new!

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

General Process Model Components
* Guidance and alternatives to be considered
" Policy and standards to be followed
* Well-defined activities (multiple threads possible)

- Methods
- Procedures

* Completion criteria: transitioning to next phase
- Reviews
- Metrics

* Constraints
* People

- Project
- Management
- Customers

" Tools to effectively manage and support the process

" Documents

[merger of two lists]

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Process Model for Trusted Systems in Ada
" Basis
" Drivers
" Constraints

Basis: Spiral Process Model
" Risk management (resolution of drivers against constraints)

- Risk management plan
- Perform risk assessment for each activity
- Focus on specific risks - identify risk(s) and then mitigate it through specific activities,

e.g., prototyping, specifying, simulating, formally modeling/analyzing

" Iteration at different levels
- Controlled and managed through automated configuration management

Drivers
* Trust
* Ada
" Performance

Constraints
" Political/sociological environment
" Cost
* Available technology/knowledge

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Trust as a Driver
Continuum of trust levels -- discussion on what level(s) we'll address
in this contract

1. TCSEC definition of trust
- Confidentiality
- Address 'beyond B2 criteria'

2. Security -*=
- Confidentiality
- Integrity
- Assured service

n. Functional correctness

Discussion

" Defining trust
" Defining trust policy

" Coupling policy with assurance
" Coupling mission criticality with trust
" Determining impact of trust
" Impact of complexity on trust

" Controlling iterative development in a trusted manner

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Trust as a Driver
Aspects of Trust

" Security (confidentiality)
" Safeiy
" Mission-criticality

* Data integrity
" Process integrity
" Assured service
" Functional correctness

* Reliability
" Evolution of trust

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Policy - FAA Advanced Automated System

" IDES * Space Shuttle/Space Station

" Clark and Wilson Systems

• Electronic Funds TMachTransfer 1BeodA

A /Critical
TCSEC Medical

• Msg Flow Modulator Systems
* Restricted Access • Nuclear Safety
Processor Systems

D Architecture/Assurance

Accreditation Trust Dimensions

Note:
Metric on policy not defined:

- Complexity?
- Encompassing more aspects of trust?
- Degree of formality?

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Ada as a Driver
" Uniformity offered by Ada in specification/design and implementation

- Supports traceability (no gap between notations)
- Provides consistent metric throughout life cycle
- Early design validation (compilable Ada specifications) and better interface definition!

checking

• Encourages software engineering aspects of Ada
-Top down development
- Object oriented design/development

" Reusability of Ada packages, components, designs
- Promotes cost-effectiveness

" Increasing opportunity to use tools:
- Support reasoning needed for trust
- Support configuration management control needed for trust

* Verifiability of Ada:
-Richest subset for target systems well address

Issue:
* Use of Ada as a formal specification language to support consistent

notation throughout the development process

[Get information on Dave Luckham s work and on Odyssey Research
Associates work w.r.t. formal specfications with Ada-like languages]

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Performance as a Driver
Aspects of performance

* Speed
" Effectiveness

" System performance
* Mission-criticality performance
" Resource ulilization
" Real-time effects

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Constraints
Political/Sociological Environment ("Human Aspects")

" Communication methods
- Wrthin project - With subcontractors - Between securfty/trust engineering
-Up to management - With evaluators and developers
- With customers - With accreditors

" Organizational constructs
- Company (standards and procedures, culture) - Customer environment

" Evaluation/certification process (NCSC, other)
• Accreditation/acceptance criteria
* Political ramifications

- What's acceptable to the organization
- What's acceptable to the evaluation/accreditation
- Issues and differing goals among customers, evaluators and accreditors

" Staffing continuity and stability
- Project (different for commercial products and mission-critical systems developments)
- Customer community
- Evaluation/certification/accreditation communities

" Physical environment
- Location of people - Optimal equipment mix
- SCIFs

" Response to change in perception of requirements (e.g., Ada is now
important..., new aspect of trust is now important..., etc.)

" User community
- Usually different from the customers

" Skill mix on projects
- Ada expertise and experience - Much skill specialization is reality (e.g., developer, security
-Trust expertise and experience engineer) but cross-fertilization is what's needed

• Methods of conflict resolution
- Strength of personality

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstu,, ning Session
17 February 1989

Constraints
Cost

" Process needs to be cost-effective

" Financial rules
- Capital vs. labor dollars
- My $ vs. your $

" More cost up front -- lower lifecycle cost

" Mesh cost model w~qh revolutions of the spiral

" Appropriate use of assurance technology consistent with cost

" Schedule

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Constraints
Available Technology/Knowledge

[Some aspects not well understood]

*Available products/components

" Available support tools
- Verification environment
- Development environment

• Maturity level
-Technology
- Knowledge

" Trustworthiness of the development environment
-Compiler
- Ada programming support environment (APSE)
- Configuration management system

DARPA
Advanced Computing Systems Project

Notes from Process Model Brainstorming Session
17 February 1989

Issues to be Addressed
" Domain of target systems -- types of systems we are addressing

- Large complex mission-critical systems?
- Systems like FAA's new Air Traffic Control System?
- Trusted commercial products?

* DoD-STD-2167A
- Consistent with? probably not
- Evolvable from it to our process model?

* Trust issues with respect to the development environment

* Other system tradeoffs against trust
- EvolvabilMy
- Extensibility
- Configurability
- Applicability
- Complexity

DARPA
ADVANCED COMPUTING SYSTEMS (ACS) PROJECT

Revised Notes on
Distinctions between Commercial

and Mission-critical Trusted Systems
13, March 1989

An ACS Process Model goal is to provide a flexible framework that
applies to both commercial and mission-critical trusted system life
cycle activities. To better understand the process model
applicability to both environments, distinctions between them were
analyzed. Figure-i presents an overview of the distinctions. A
summary of the initial analysis is provided below.

BASIC DRIVERS

Basic drivers for coiwumercial and mission-critical projects for which
the process model applies are similar: Ada, trust and performance.
However, the motivations are different.

Commercial Systems are motivated by commercial markets and upward
compatibility with corporate produict lines. Market pressure is a
major influence.

Mission-critical Systems are motivated by mission requirements and are
normally focused on new system development. While major upgrades are
sometimes developed and compatibility issues are of concern, total
replacement is the usual situation. Government requirements are
beginning to change, however; and there will likely be more emphasis
in the future on upward compatibility. Mission need is a major
influence.

Ada. In response to Government mandates to use Ada in DOD
procurements, both commercial and mission-critical system developers
are increasing their Ada-based capabilities.

Commercial Systems are responding to the market needs of the
Government and contractors. Commercial Ada products are
evolving. However, there is no current large-scale commitment
to Ada products.

Mission-critical Systems are more frequently driven by the
Government mandate for Ada. Many current and future procurements
have the Ada language as a hard requirement for mission-critical
development. As the Government commitment to Ada grows, the
importance of Ada capabilities is increasing throughout the
contractor community. Contractor involvement in Ada systems
development is already significant, and it is growing.

1

Drivers: Commercial Systems Mission-Critical Systems
Ada: , Government emphasis • Government requirement

* Government and contractor markets * Increasingly important
- Limited involvement * Broad-based involvement

Trust- • Market pressure - Critical Government requirements
- Need for certified products - Accreditation emphasis
, Current emphasis on security - High nsks imposed

Performance: a Product upgrades -Contractual obligation
* Competitive edge * Mssion needs
• Flexible requirements • Little or no requirements flexibility
* Product upward compabbilty • New or replacement system

Constraints

Cost: * Corporate marketing basis * Government-based contract
* Company managed and controlled * Subject to Government management and cor'fo
• Funding based on business perceptions • Based on Government funding
* Company-driven expectations • Mission onented
• More staff/management stability • Constrained by politics, federal budget
• Fewer level: of diversity * Complex organiational structure
* More realistc cost planning * Less stability at all levels
• Government-driven certifications • Cost goals can be unrealistic
• Cost emphasis on coding and testing • Government-driven accr-drtations and
• Responsive to market changes certifications

- Cost emphasis c n coding and testing tied to
Government reviews

, Responsive to perceived mission needs

Political/Sociological -Simpler management practices * Comple, ..,-iagement structure
Environment: * Company-based politics * Government and company politcs

• Rexible personnel pracbces * Staffing tied to SOW and costing
• Contir urty of corporate knowledge • High turnover, tess continuity
- Centralized technical information - Disthbuted knowledge base
• Communication easier * Communication more difficult
• Requirements can be responsive * Requirements bed to Government perceptions
• Commercialty-based goals * Mission-based goals
• Enhancements emphasis • New procurement emphasis
• Certification involves the government • Need to agree on accredition and certificato,

requirements

Available Technology, * More focused technology base • Drverse technologies

Knowledge. * Unified project support tools and mettoos * Project-oriented support tools and methods
• Participating in standards developments * Responding to existng sl;tndards

and new inibatives * Responding to Government desire f(.v3nced

• Not likely to push state-of-the-art technology
- Realirty based • Often pushing the state-of-the-art
- Not generally high risk • Government requirements may not be realst.c

* Can often be high nsk

Figure - 1. Distinctions between Commercial and Mission-Critical Trusted Systems

Trust. Trust and security needs are creating more business
opportunities for both commercial and mission-critical system
developers. Trust and security issues are evolving as a result of
enhanced computer and communications capabilities as well as the
growing need for more complex software systems.

Commercial Systems developers are experiencing increased market
pressure to meet Government and industry requirements for trusted
systems. There is a genuine need for certified products, and
there is a defined customer base. Evaluated products are
emerging in response to Government DOD requirements. Other
trusted products are being developed for the trusted systems
market.

Mission-critical Systems are frequently required to meet trust
requirements defined by the Government. Developers of systems
undergoing certifications and accreditation are strongly driven
to provide acceptable levels of trust with enough assurance to
convince the responsible authorities that the system meets the
trust requirements. Government requirements are not always based
on the realities of today's technology limitations. Consequently,
trust requirements may represent high risk areas for a system.

Performance. Performancp has been a traditional driver for system
developments both in the commercial and mission-critical worlds.
Commercial systems are driven by the need to be competitive, and they
often upgrade existing products for performance enhancements alone.
Mission-critical systems are developed to meet strict Government
requirements for system performance.

Commercial Systems base performance requirements on commercial
considerations. Some product upgrades and new products are built
to meet market demands for better performance. There can be
great flexibility in performance requirements since they are
founded on perceived marketability. Upward compatibility of
existing products i- an important issue for commercial
developers.

Mission-,ritical Systems must respond to critical performance
requirements established by the Government for many procurements.
Mission operational needs are paramount with little or no
flexibility permitted for some systems. A contractual obligation
to meet Government requirements drives the system design and
development. Realistic trade-offs between security and
performance are frequently necessary in trusted system
developments. Performance and security risks must be identified
early. Most mission-critical systems are new procurements in
response to new or increased mission requirements.

CONSTRAINTS

Constraints vary greatly for commercial and mission-critical trusted

2

system projects. Major differences in cost, available technology and
sociological considerations are summarized below.

Cost. Cost is a critical factor that influences both commercial
product development and mission-critical systems.

Commercial Systems are constrained by corporate marketing
strategies, corporate management, company willingness to finance
projects and company strength in the market place. Cost
reporting and controls are likely to be much looser than
Government funded projects. Projects are subject to internal
policies and audits with no need to comply with Government project
management costing structure, audits and accounting
practices. Cost planning is usually realistic and tied to
feasible goals and market perceptions. Projects can be suddenly
terminated as a result of corporate business needs. Additional
funding can be obtained, also in response to business needs.
Unlike mission-critical projects, there is a flexibility for
spending money on commercial product development with
repeated product sales as a pay off for the initial investment.

Reporting and documentation cost constraints are limited to
corporate and market needs. Traditionally, design documentation
is minimal while a heavy emphasis has been placed on user
documentation. Assurance costs have largely been applied to
testing. With the move toward developing (TCSEC) trusted
products which require Government (NCSC) product evaluation,
commercial projects must respond to the design documentation
and assurance requirements of the Government.

The commercial model for project cost distribution is likely
to vary for different vendors. There is an emphasis on the
coding and testing costs rather than design. Some companies
that are emphasizing computer aided systems engineering (CASE)
methods and tools may become notable exceptions.

Commercial projects are cost-driven by competitive factors and
the need to bring a product to market.

Mission-critical Systems are constrained by the Government
defense budget, congressional allocations and perceived defense
needs (politics). Costing is tightly controlled by Government
requirements for cost management, and projects are required to
provide detailed reviews and reports to the Government. All
projects are subject to basic Government controls and audits
while the specific costing structure depends on the type of
contract in place. Mission-(citical projects are subject to
sudden reductions or terminations based on Government budget
needs (e.g., Gramm-Rudman, new administration, etc.)

Reporting and documentation consume a large portion of project
budgets due to traditionally heavy Government requirements for

3

mission-critical systems that must be operated and maintained by
the Government. Design documentation is emphasized, although
traditional assurance measures still rely largely on testing
activities. Trusted system development, however, requires a
sizeable investment in design and assurance activities for both
certifications and system accreditation.

The current cost model for mission-critical system development
is tied to traditional Government practices. The distribution
is as follows: 20%-design, 40%-code, 40%-integration and test.
A process model for trusted systems requires an emphasis on risk
control and a heavier investment up front. A recommended
distribution is: 50%-design, 25%-code, 25% test and integration.

Mission-critical systems are driven by Government cost
constraints, project control dictates and mission requirements.

Political/Sociological Environment. The human aspects of project
activities are similar in many respects; however, commercial and
mission-critical projects are very different in orientation, politics
and personal dynamics. Issues such as staffing, physical environment,
communication, perception of requirements, customer satisfaction and
methods of conflict resolution are not viewed and managed the same way
in commercial and mission-critical projects.

Commercial Systems generally have a simpler management and
control atmosphere with politics that involve company roles and
corporate expectations. The management-staff relationship is
based on company culture and individual dynamics. Commercial
personnel practices are tied to company-driven perceptions of
value and tend to be very flexible. Most commercial projects
enjoy staff stability and a continuity of corporate knowledge.

Communication is a challenge for any complex system involving
many personnel working on different aspects of a project that
must ultimately form an integrated whole. Within a commercial
atmosphere there are generally fewer levels of diversity (e.g.,
no Government or IV&V oversight) and communication should be
easier to achieve.

Commercial systems are more likely to respond to established
product lines. Requirements are defined to satisfy a perceived
market as well as to identify a technical set of needs for a
specific product. There is generally more flexibility for the
development of system features. Commercial requirements are more
reality-based and tend to respond to known and proven ideas.
Government requirements are an important consideration for
trusted products. Certification/evaluation planning involves
Government oversight and assistance with product definition.
Products are built for flexibility, and a usual goal is
certification for use in various environments. The complexities
and concerns of mission-operation requirements and system

4

accreditation are not a part of most commercial product
projects. Commercial systems must be responsive to market
changes above all.

Mission-critical Systems have a complex management structure
with layers of responsibility within the Government and the
company (or companies) involved in a project. Reporting and
project controls are usually formal and based on strictly defined
Government requirements as well as corporate project management
rules. Personnel practices are tied to Government needs and
perceptions since labor categories and task definitions are driven
by the project statement of work and cost management
policies. Therefore, there is less flexibility for staff
and project management than in a commercial project environment.
Due to the complex political environment, the strict controls and
the nature of the Government (especially the services), staff
turnover can be a frequent occurrence on both the Government and
the contractor side.

Government oversight may involve diverse organizations, each
playing some role in the system acquisition, accreditation,
operations or maintenance. Communication issues and political
considerations can be extremely difficult to resolve. In
addition, high staff turnover can complicate communication for a
mission-critical project.

Requirements must be satisfied in response to Government
perceptions; therefore an understanding and agreement must be
achieved and maintained between the Government and the
responsible contractor. Government requirements for a trusted
project involve trust certification and system accreditation.
Security requirements must be resolved to the satisfaction of
all responsible authorities. Accreditation issues need to be
well understood and defined at the beginning of the project.
Mission-critical systems are usually built for a specific
environment and oriented toward the operational mission.
Above all, mission-critical systems are responsive to customer
mission requirements and customer perceptions.

Available Technology/Knowledge. While commercial and mission-critical
trusted system projects are both limited by security and technology
issues that are still in the research stages (e.g., formal assurance
methods beyond confidentiality and at code level and for large
systems), there are differences in the way current technological
advances are approached and accessed.

Commercial Systems developers are likely to have access to
focused corporate knowledge and a unified set of project support
tools and methodologies with available guidance from corporate
personnel. For example, standard, commercial configuration
management should be stronger than mission-critical system
configuration management which probably differs for each

5

project. In general, a commercial environment provides a
production-oriented basis for technical advancements specific to
the corporate activities, strategies and products derived for
perceived markets. Products requiring high risk advancements
are usually not undertaken. Decisions are based on expected
return weighted against risks. Technological advances are sought
to provide a competitive edge.

Many companies building commercial products are participating in
standards definitions (e.g., POSIX, SDNS, GOSIP) in cooperation
with the Government and other vendors. Government and industry
pressures for standards have forced many vendors to be actively
involved, while developers of mission-critical systems have not
been as oriented toward standards definitions.

Mission-critical Systems developers have access to available
corporate technology. However, much of the available knowledge,
methods and tools are widely distributed and project oriented.
Much corporate knowledge is based on one-of-a-kind applications
that are founded in project-specific details. Many tools are
used only for a specific project and are not readily tailorable.
The corporate technology base may be advanced and very strong
in a specific area while lacking in broad applications. In
general, mission-critical systems are built to satisfy
operational needs and are responding to standard requirements
rather than establishing and driving the development of
stdndards. Systems with high trust requirements may be driven by
unrealistic Government demands that stretch the state of the art.
Technological advances can be mission-driven and accomplished in
response to the strict demands of the Government.

6

T' RW
ADA/SECURITY STUDY AND MACH ANALYSIS

Internal Working Note
13 March 1989

INTRODUCTION

This internal working note is based on initial work carried out by L. Nagy of TRW over a seven
week period (23 January to 10 March 1989) before we received our SUN hardware and MACH
software. It is a snapshot of activity related to defining Appendix B of the Phase I Process
Model Report ('Ada/Security Study and MACH Analysis") and in gaining understanding of the
current MACH and TMACH work at CMU and TIS. Some of the analysis is based upon
discussion with the TIS TMACH developers and analyzing their TMACH development at TIS
facilities in Glenwood, Maryland.

OVERVIEW

A. Task Definition

In the Technical Volume of our Proposal prepared 2 July 1987, this task is defined as follows:

"Analysis work will be directed at providing a formal Ada/Security analysis for MACH.
This analysis will include development of external interface specifications in Ada for
MACH. The specification will be used to identify the Ada and security issues that must
be resolved in development of a trusted MACH prototype in Ada. This analysis and
specification will rely on the Process Model developed with this effort and will provide an
opportunity to identify the practical issues that require improvements."

Initial trust assessment of MACH has been carried out by TIS under a separate DARPA
contract as part of their development of a proof of concept TMACH prototype in C. Our work
will build upon TIS's work and identify and evaluate issues related to the development of trusted
MACH in Ada. We also will extend our analysis to the development of tangible products (Ada
specifications, prototypes, tools) which can be directly applied toward the ultimate goal of
trusted MACH in Ada.

The areas of interest are in the interaction of the following domains:

Ada
Security
MACH (and trusted MACH)
Advanced Process Model (APM)

and illustrated in the following figure:

Adao eeuriLy

Moch AI'M

Domains of Interest

If we consider the areas of interest two at a time, we may note that in some areas of overlap,
i.e., Ada-Security, there is already a relatively long history of interest and some effort (although
significantly less of achievement). Other areas of overlap (APM-Ada) and (APM-Security) are
being addressed by other sections of our report. Still other areas are being covered, at least
partially, by related efforts: TIS in the area of MACH and Security, and CLI in the area of Ada
and security.

The one area of overlap that as yet hasn't gotten significant attention is the Ada-MACH one
and as such this will be the primary focus for this part of the effort. It should be noted that this
area of overlap includes portions of other areas of overlap and as such the results and issues
from these areas are also applicable.

B. Activities

The effort is being structured by first examining the MACH-Ada overlap. This area roughly
corresponds to the language issues of Ada as applied to MACH development. The security
domain will then be factored in, in essence, examining the security issues related to developing
MACH in Ada. Finally, the Advanced Process Model domain will be factored in. This effectiveiy
introduces software development lifecycle factors to the primary objective.

Note that the order of introduction of the domains is important. The order is intended to reflect
the relative importance of these factors in this effort's resolution of the issues of the primary
objective

1. MACH and Trusted MACH Analysis

The objective of this task has been to gain a deeper understanding of MACH and Trusted
MACH. To be included in this understanding is the overall functional capabilities of MACH
and TMACH, the design of key subsystems of MACH and TMACH, and the implementation
details of MACH and TMACH. The purpose of this understanding has been to gain insight
into the project's ultimate objective of examining and evaluating the issues related to the
design and development of a trusted MACH in Ada.

The initial analysis is described here:

o It appears that ,, h current MACH implementation is a highly intertwined composite of
MACH and Unix elements. Included in these elements are relatively few TIS
modifications as part of their trust enhancement of MACH. Not all MACH capabilities
are present (e.g., threads). All Unix features appear to be present although reliability of
the underlying systems may not be as good as the original Unix system.

o The MACH and TMACH implementations make strong use of MACH IPC capabilities
and any Ada implementation of MACH will have to be efficiently done.

o The MACH kernel is currently implemented using Unix kernel processes. Any trusted
implementation using this design will have to be able to formally handle this abstraction.

o The current MACH development environment is highly Unix and C based. Additional
CMU tools are also utilized in the maintenance and generation of the MACH kernel and
server executables. This development environment is driven by portability concerns
target dependencies, and existing Unix code. Any Ada environment for MACH
development should likewise provide features for:

a) Isolating implementation which is non-portable
b) Selecting particular targets

o The MACH Memory Management subsystem is being considered as a possible
development task in a later phase (along with previously mentioned candidates such as
the Name Server). The size of the Memory Management subsystem and the TIS
Name Server are similar. Moreover, an Ada implementation of this subsystem would
allow for the addressing of high-risk issues of performance impact, portability, and
security issues of this critical kernel component.

o Because of the complex detail required to construct an RPC based interface between
servers, the MACH environment provides a tool, MIG (MACH Interface Generator),
which automatically generates the code for receiving and sending messages. MIG
generates C RPC procedures for sending and receiving MACH messages based on a
PASCAL-like specification of the message.

An extension of this approach for generating Ada interfaces (and code) from these
specifications is being considered.

2 Ada and Ada/Security Analysis

The objective of this set of activities is to examine and evaluate those features of Ada affecting
the portability, performance, cost, compatibility and other aspects of an implementation of
MACH in Ada. An identification and analysis will be made of those features of Ada whose use in
trusted systems has raised concern in the past.

The results obtained thus far are:

o The allowed syntax of MACH messages (essentially arbitrary structures) will pose
problems in an Ada implementation of the MACH kernel. This is a direct result of the
necessity of the MACH kernel to be able to parse each and every message sent (to
mediate port transfer) and Ada's inability to effectively manipulate the underlying
representation of an object.

o ML y complaints have been voiced about the impreciseness of some of Ada's language
features. These features will be enumerated and annotated with the impact on security'
verification of Ada programs.

c An initial specification of an Ada interface specification and body to the MACH kernel is
being done. The goal is to produce a compilable and executable Ada interface to the
MACH kernel. This implementation will be evaluated with respect to security,
performance, and portability. The structure of this interface is:

MACH Kernel Interface in Ada

The following packages w:l be defined:

MACH-MACHINE: defines all hardware/system/configuration dependencies

MACH-TYPES: defines all basic kernel abstractions which one globai to the five subsystems

MACH-EXCEPTIONS: defines all the kernel exceptions returned by the MACH calls

MACH: defines 5 nested packages: TASK, THREAD, PORT, VM, and PAGER.
These packages provide the interface to the kernel provided services
according to subsystem

These packages will have the following dependency structure:

MACH-MACHINE

MACH-TYP ES MAC H -EXC EPTIO NS

MAtH
TAS;K

THREAD

PORT "with"
VPM
PA ER

3. PROCESS MODELS

The objective of this set of actvities has been to examine the constituent actvities and products
of a software development life-cycle with particular emphasis on Ada and trusted system
development.

Process Model examples being investigated are: the Ada Process Model, the Waterfall Model,
Formal Development paths, Orange Book requirements on trusted system development, and
development environments (TRW's Quantum Leap and the Arcadia Project).

The initial analysis indicates:

o The package specification concept is the key Ada feature used in developing Ada
systems and has a use which transcends the implementation language.

o A significant problem in the past with the development of trusted systems has been the
establishment and maintenance of a correspondence between the formal and functional
specifications. This appears to be the result of the amount of change that a functional
specification undergoes during development and the fact that the formal and functional
specifications are expressed separately.

C. ACTIVITY PLANS

Based on the results presented in the previous section and the overall objective of developing a
trusied version of MACH in Ada the following will be included in the next phase of activities:

1. MACH and TMACH Analysis

Continue with the MACH kernel evaluation

o Continue with the evaluation of enhancing MIG to support the generation of Ada code or
interfaces

2 Ada and Ada/Security Analysis

o Complete an Ada package specification and rationale for the MACH/TMACH kernel
interface.

o Complete an annotated list of Ada features which affect security of an implementation.
Include possible approaches for dealing with these insecure features.

3. Security

o Continue to examine the current and research practice of trust engineering with the goal
of identifying technology (primary tools) which may be applicable to trusted MACH
development in Ada. •

o Based on this list, attempt to identify areas of critical need.

4, Process Models

o Investigate the use of a common specification language related to Ada.

